英特尔杯人工智能挑战赛需要用到Caffe深度学习框架。Caffe框架在macOS上需要手动编译,然而官方的安装教程年久失修,并且编译过程中会遇到由不同版本或环境而引发的问题,我历时三天,踩了无数的坑之后,终于成功安装了Caffe框架。在此记录下安装的过程和遇到的错误,希望对你有所帮助。
系统环境及安装配置
- Macbook Air 13′ macOS High Sierra
- Homebrew
- Xcode
- Miniconda Python2(Caffe建议使用Anaconda Python,另外我在尝试使用Python3编译Caffe时遇到了未知的错误,因此建议使用Python2.7)
- openBLAS(Intel的MKL库会提供更高性能且更稳定的计算,在校学生可以通过这里申请:Intel® Math Kernel Library (Intel® MKL) | Intel® Software)
- CPU ONLY模式(MacBook Air没有NVIDIA GPU,因此使用CPU ONLY模式,不需要安装CUDA及cuDNN)
安装依赖
首先安装Miniconda安装包,并确保Miniconda的路径已经被加入PATH
,编辑~/.zshrc
(或bash_profile
),添加
export PATH="/Users/frank/miniconda2/bin:$PATH"
使用Brew安装依赖
Brew tap homebrew/science brew install --fresh -vd snappy leveldb gflags glog szip lmdb opencv hdf5 openblas brew install --build-from-source --with-python --fresh -vd protobuf brew install --build-from-source --fresh -vd boost boost-python
Miniconda只附带了很少的包,使用pip安装其余的依赖。如果你使用Anaconda,则可以跳过这一步。
pip install -r python/requirement.txt
编译caffe
git clone https://github.com/BVLC/caffe.git cd caffe
编辑编译配置文件Makefile.config
以下是我的配置,需要修改的位置已在注释中标注
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # 开启CPU模式 CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. # 由于我们使用CPU模式,所以涉及到CUDA的地方不用管 CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_52,code=sm_52 \ -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas # 我们安装的是openBLAS,将下面字段改为open BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # Homebrew puts openblas in a directory that is not on the standard search path BLAS_INCLUDE := $(shell brew --prefix openblas)/include BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. # PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # 设置Anaconda的路径。在macOS中往往会有多个Python环境,确保你所填写的路径都属于同一个Python环境,避免混淆。 ANACONDA_HOME := /Users/frank/miniconda2/ PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.6m # PYTHON_INCLUDE := /usr/include/python3.5m \ /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. # PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
开始编译
make clean make all -j8(数字表示线程数量,可以根据你的硬件配置增加或减少) make test -j8 make runtest make pycaffe make pytest
设置环境变量
编译完成的文件位于/path/to/caffe/python
目录下,需要将这个路径加入PYTHONPATH
编辑~/.zshrc
(或bash_profile
),添加
export PYTHONPATH=/Users/username/git/caffe/python:$PYTHONPATH
Troubleshooting
TypeError: new() got an unexpected keyword argument ‘file’
TypeError: __new__() got an unexpected keyword argument ‘file'
可能的原因是brew安装的protobuf版本高于3.5.0(我这里是3.5.1),而pip或conda安装的protobuf版本低于3.5.0。然而错误信息中的file
字段是在3.5.0引入的,因此引发错误。
解决方案为使用pip或conda安装新版本的protobuf
首先使用pip show protobuf
查看当前安装的版本,如果低于3.5.0,则pip install protobuf==3.5.1
[.build_release/lib/libcaffe.so.1.0.0] Error 1
ld: symbol(s) not found for architecture x86_64 clang: error: linker command failed with exit code 1 (use -v to see invocation) make: *** [.build_release/lib/libcaffe.so.1.0.0] Error 1
解决方案为在makefile文件中找到LIBRARIES
在后面添加opencv_imgcodecs
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 opencv_imgcodecs
References
https://github.com/BVLC/caffe/issues/6143
http://blog.csdn.net/wxy_2017/article/details/78609843
http://xxuan.me/2016-11-12-install-caffe-under-macos.html
https://github.com/BVLC/caffe/issues/5357
https://github.com/BVLC/caffe/issues/6054
发表回复/Leave a Reply